1.解方程[(x+2)/(x-1)]+[(x+3)(x-2)]=m/[(x-1)(x-2)](x+2)*(x-2)+[(x+3)(x-2)][(x-1)(x-2)]=mx=1是增根,代入m=-3 2解6/[(x+1)(x-1)]-[m/(x-1)]=16-m(x+1)=(x+1)(x-1)若x=1是增根,代入m=3 若x=-1是增根,6=0矛盾,所以增根为x=1。