解:∵四边形AEDC为平行四边形∴ED=AC,AE=CD又∵△ADE和△ABC为等腰直角三角形∴AE=AD=CD,AB=AC=DE∴AD²+CD²=AC²∴△ACD为等腰直角三角形所以△CDE≌△BAD∴CE=BD∵∩BAD=∩BAE∴△ABD≌△ABE所以∩ADB=∩AEB∵△ACE≌△ABD所以∩BAD=∩ACE∴∩BGC=90°=∩CGD又因为∩AEF=∩GCD∴△AEF∽△GCD∴CD/EF=CG/AC即CD*AE=EF*CG所以选D
试卷做到哪了?