什么叫不定积分

2025-02-24 01:53:27
推荐回答(5个)
回答1:

回答2:

∫f(x)dx=F(x)+C,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数。

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料:

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

参考资料来源:百度百科-不定积分

回答3:

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

函数的和的不定积分等于各个函数的不定积分的和;即:设函数

 

 

的原函数存在,则

求不定积分时,被积函数中的常数因子可以提到积分号外面来。即:设函数

 

的原函数存在,

 

非零常数,则

ps:以下的C都是指任意积分常数。 [1] 

1、

 

,a是常数

2、

 

,其中a为常数,且a ≠ -1

3、

4、

5、

 

,其中a > 0 ,且a ≠ 1

6、

7、

8、

9、

10、

11、

12、

13、

14、

15、

回答4:

不定积分就是函数的原函数,即找到所有的新函数,使得这些新函数的导数是给定的函数。它与定积分一点都不扯,定积分是一个数值,即按照黎曼积分定义取得的极限值,几何意义是函数图像下面积。

回答5:

微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′ =f。 不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。