f(x)=ax+x/x-1=ax+(x-1+1)/(x-1)=ax+1+1/(x-1)=a(x-1)+1/(x-1)+a+1>=2√a+a+1(x>1)
1.当a分别取1,2,3时,f(x)的最小值分别是4,3+2√2,4+2√3.
2.a=1,b=2,3时f(x)>b恒成立,b=4,5时不能恒成立;a=2,3,b=2,3,4,5,f(x)>b都恒成立,
所以f(x)>b恒成立的概率是10/12=5/6.
a=1时:f(x)=x+1+1/(x-1),f'(x)=1-1/(x-1)^2。f'(x)在(1,2)上恒小于零,(2,+∞)上恒大于零,所以f(x)min=f(2)=4.4>b的概率等于1/2,因为a是三取一所以概率再乘以1/3得1/6.a=2时:f'(x)=2-1/(x-1)^2....推得f(x)min=f(1+√2/2)=3+2√2>5,所以此时f(x)min>b概率为1,再乘1/3得1/3;a=3时可推得f(x)min=f(1+√3/3)=4+2√3>5,所以还是1/3.综上可知:总概率=1/6+1/3+1/3=5/6.