已知|x-1|+(y+1)²=0 求代数式(

2024-12-28 09:37:44
推荐回答(5个)
回答1:

绝对值与平方数都是非负数
两个非负数的和是0,那么这两个数都是0
所以x-1=0,y+1=0
解得:x=1,y=-1
(x²+4xy-2y²)-(x²+y)-2(y²+xy)-½(x-8y²)
=(1-4-2)-(1-1)-2*(1-1)-1/2(1-8)
=-5-0-0+3.5
=-1.5

回答2:

∵|x-1|+(y+1)²=0
∴x-1=0,y+1=0
∴X=1,Y=-1
∴(x²+4xy-2y²)-(x²+y)-2(y²+xy)-½(x-8y²)
=﹙1²﹢4×1×﹙-1﹚﹣2×﹙-1﹚²-﹙1²﹢﹙﹣1﹚﹚﹣2×[﹙﹣1﹚²﹢1×﹙﹣1﹚]﹣﹙1/2﹚×[1﹣8×﹙﹣1﹚²]
=-3/2

回答3:

|x-1|+(y+1)²=0
x-1=0, y+1=0
x=1, y=-1
(x²+4xy-2y²)-(x²+y)-2(y²+xy)-½(x-8y²)
=﹙1-4-2﹚-﹙1-1﹚-2﹙1-1﹚-½﹙1-8﹚
=-5.5+3.5
=-2

回答4:

首先由题中条件知x-1=0,y+1=0,得x=1,y=-1
将两值代入,得答案为-3/2

回答5:

|x-1|+(y+1)²=0
|x-1|≥0,(y+1)²,≥0
|x-1|=0,(y+1)²=0
x=1,y=-1
(x²+4xy-2y²)-(x²+y)-2(y²+xy)-½(x-8y²)
=(1-4-2)-(1-1)-2(1-1)-½(1-8)
=-5-½(-7)
=-5+7/2
=-3/2