求和:1⼀2^2-1+1⼀3^2-1+1⼀4^2-1+...+1⼀n^2-1.

2024-12-28 07:23:05
推荐回答(1个)
回答1:

=1/3*1+1/4*2+1/5*3+1/6*4+……+1/(n+1)(n-1)
=1/2*[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+……+1/(n-1)-1/(n+1)]
=1/2*(1+1/2-1/n-1/(n+1))
=3/4-1/2n-1/2(n+1)