进行第一类曲线积分和第二类曲线积分的转化,只需将第一类曲线积分中ds利用弧微分公式
转化为坐标表示即可。
第一类曲线积分是对弧长积分,即定义在弧长上,没有方向.如求非密度均匀的线状物体质量。第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题。假设曲线正向,两者可互换,弧长元dscosθ=dx,dssinθ=dy。
扩展资料
两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。
参考资料百度百科-曲线积分
第一类是对弧长积分,即定义在弧长上,没有方向.如求非密度均匀的线状物体质量。
第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题。
假设曲线正向,两者可互换,弧长元dscosθ=dx,dssinθ=dy,(cosθ,sinθ)是沿着正向曲线单位切向量。