(1)设甲乙运动时间为t,
甲的运动速度为2m/s,乙的运动速度为4m/s,
根据速度公式得:DB=2m/s?t,CE=4m/s?t,
因为,BC=60m,所以DC=BC-BD=60m-2m/s?t,
根据勾股定理得,DE2=CD2+CE2,
设y=DE,所以,y2=(60m-2m/s?t)2+(4m/s?t)2,
整理得,y2=20t2-240t+3600,
当t=-
=-b 2a
=6s时,y最小,即甲乙距离最短.?(?240) 2×20
(2)①如分析中图1:
甲从B向C运动到D点,乙从C向A运动E点,△DCE∽△ACB,
所以
=DC AC
,CE BC
=60m?2m/s?t 80m
.4m/s?t 60m
t=
s.90 11
②如分析中图2,甲从B向C运动到M点,乙从C向A运动N点,△CMN∽△CBA,
所以
=CM CB
,CN CA
CM=60m-2m/s?t,CN=4m/s?t,
=60m?2m/s?t 60m
,4m/s?t 80m
所以,t=12s.
故答案为:6;
或12.90 11