y✀-2xy=3求详解

2025-02-24 03:37:27
推荐回答(1个)
回答1:

解:(常数变易法)∵y'+2xy=0==>dy/y=-2xdx==>ln│y│=-2x²+ln│C│(C是积分常数)==>y=Ce^(-x²)∴设微分方程y'+2xy+2(x^3)=0的通解为y=C(x)e^(-x²)(C(x)表示关于x的函数)∵y'=C'(x)e^(-x²)-2xC(x)e^(-x²)代入原方程得C'(x)e^(-x²)+2x³=0==>C'(x)=-2x³e^(x²)==>C(x)=-2∫x³e^(x²)dx=-∫x²e^(x²)d(x²)=-x²e^(x²)+∫e^(x²)d(x²)(应用分部积分法)=-x²e^(x²)+e^(x²)+C(C是积分常数)=(1-x²)e^(x²)+C∴y=C(x)e^(-x²)=[(1-x²)e^(x²)+C]e^(-x²)=1-x²+Ce^(-x²)故微分方程y'+2xy+2(x^3)=0的通解是y=1-x²+Ce^(-x²)(C是积分常数)。