f(x)=sin2x+cos2x+2
=√2sin(2x+π/4)+2
(1) 2kπ-π/2<=2x+π/4<=2kπ+π/2
kπ-3π/8<=x<=kπ+π/8
增区间【kπ-3π/8,kπ+π/8】 k∈Z
(2)f(C)=√2sin(2C+π/4)+2=3
sin(2C+π/4)=√2/2 2C+π/4=3π/4 C=π/4
余弦定理
c^2=a^2+b^2-2ab*cosC
2=4+b^2-2√2b
b^2-2√2b+2=0
(b-√2)^2=0
b=√2
f(x)=sin²x+2sinxcosx+3cos²x
=2sinxcosx+2cos²x+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
1. 2kπ-π/2≤2x+π/4≤2kπ+π/2
kπ-3π/8≤x≤kπ+π/8
2kπ+π/2≤2x+π/4≤2kπ+3π/2
kπ+π/8≤x≤kπ+5π/8
单增区间:[kπ-3π/8,kπ+π/8];单减区间:[kπ+π/8,kπ+5π/8]
2. ∵c∴0f(C)=√2sin(2C+π/4)+2=3
2C+π/4=3π/4
C=π/4
c²=b²+a²-2abcosC
b²-2√2b+2=0
(b-√2)²=0
b=√2
1-cos^2x+3cos^2x+2sinxcosx
=cos2x+2+sin2x
=根2(sin(2x+派/4))+2
-派/2+2k派<2x+派/4<派/2+2k派
[-3派/4+k派,派/4+k派]
满意请采纳好评,谢谢~