原式 = (1+x)(1+x^2)........(1+x^16) 也就是求x = 1/2 时候的值
(1-x)(1+x)(1+x^2)........(1+x^16) / (1-x)
上面都是平方差 一项一项乘出来 = (1-x^32)/(1-x)
把 x = 1/2 带入就行了
已知式子乘以(1-1/2),连续应用平方差公式可得结果。
原式=2×(1-1/2)(1+1/2)[1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^2)][1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^4)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^8)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^16)][1+1/(2^16)]
=2×[1-1/(2^32)]
=2-1/(2^31)
=(1+1/2)(1+1/2²)(1+1/2^4)(1+1/2^8)(1-1/2)/(1-1/2)+2/2^16
=(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^4)(……)/(-1/2)+1/2^15
=(1-1/2^8)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^16)/(-1/2)+1/2^15
=-2+1/2^15+1/2^15
=-2+1/2^14