f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)-f(0)+0.5f''(a)x^2-0.5f''(b)(1-x)^2|<=|f(1)-f(0)|+0.5A(x^2+(1-x)^2)<=|f(1)-f(0)|+0.5A,最后不等式是因为二次函数x^2+(1-x)^2在【0 1】上的最大值是1