x²y-e^(2x) = siny
dy/dx * x² + 2x * y - e^(2x) * 2 = cosy * dy/dx
dy/dx * x² - cosy * dy/dx = 2e^(2x) - 2xy
dy/dx = 2[e^(2x)-xy]/(x²-cosy)
L = ∫(α,α²) sin(αx) / x dx
dL/dα = dα²/dα * sin(α*α²) / α² - d(α)/dα * sin(α*α) / α
= 2αsin(α³)/α² - sin(α²)/α
= 2sin(α³)/α - sin(α²)/α
= (1/α)[2sin(α³)-sin(α²)]
这题用到的公式是:
d/dx ∫(x₁->x₂) f(t)dt = d(x₂)/dx * f(x₂) - d(x₁)/dx * f(x₁)
两边对x求导,2xy+x^2(dy/dx)-2e^2x=cosy(dy/dx)
移项x^2(dy/dx)-cosy(dy/dx)=2e^2x-2xy
得到的dy/dx=(2e^2x-2xy)/(x^2-cosy)
分部积分,直接积分算不出开,必须把积分部分拆开!高数忘得有点多,但是这点还是可以肯定的
原题:已知I(α)=∫[α^2,α] sinαx/x dx,求dI/dα 注:α为dI/dα=sin(α^2)/α-sin(α^3)/(α^2)*2*α+∫[α^2,α]