X服从均匀分布,
即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)²/12
证明如下:
设连续型随机变量X~U(a,b)
那么其分布函数F(x)=(x-a)/(b-a),a≤x≤b
E(x)=∫F(x)dx=∫(a到b)(x-a)/(b-a)dx
=(x²/2-a)/(b-a) |(a到b)
=(b²/2-a)/(b-a)-(a²/2-a)/(b-a)=(a+b)/2
E(x²)=∫F(x²)dx=∫(a到b)(x²-a)/(b-a)dx
=(x³/3-a)/(b-a) |(a到b)
=(b³/3-a)/(b-a)-(a³/3-a)/(b-a)=(a²+b²+ab)/3
所以D(x)=E(x²)-E(x)²
=(a²+b²+ab)/3-(a+b)²/4
=(a²+b²-2ab)/12=(b-a)²/12
对吗?