采用分部积分法,详细看图:
解: ∫(1-Inx)/(x-Inx)^2 dx = ∫(1-Inx)/[x²(1-Inx/x)²] dx = ∫[1/(1-Inx/x)²]*(1-Inx)/x²dx = ∫[1/(1-Inx/x)²]d(lnx/x) = -∫[1/(1-Inx/x)²d(1-lnx/x) =1/(1-Inx/x) + c =x/(x-lnx) + c
答案是:-x/(x-Inx)+C