原题:设M为部分正整数组成的集合,数列{an}的首项a1 = 1,前n项和为Sn,已知对任意整数k属于M,当n>k时,S(n+k)+S(n-k)=2(Sn+Sk)都成立。
设M ={3,4},求数列{an}的通项公式.
网上节选的答案:当k∈ M ={3,4}且n>k时,Sn+k + Sn -k = 2Sn + 2Sk且Sn+1+k + Sn +1-k = 2Sn+1 + 2Sk,,两式相减得an+1+k + an +1 -k = 2an+1,即an+1+k - an+1 = an+1 - an +1 -k .所以当n≥8时,an - 6, an - 3, an, a n+ 3, an+ 6成等差数列,且an - 6, an - 2, an + 2, an + 6也成等差数列.
【【【为何要以8为界线呢?主要是想使得n分别取3和4时成的等差数列有共同的等差项数,不然不直接令K=3,或者K=4呢,干嘛要这样烦呢?正好,当n≥8时,有了共同的项数a(n+6)】】】
先把a(n+1+k) - a(n+1) = a(n+1) - a(n +1 -k)转化为a(n+1+k) +a(n +1 -k)=2a(n+1).
因为k∈ M ={3,4},所以当k=3时,即当n>k=3时,a(n+4)+a(n-2)=2a(n+1)
当n>4时,a(n+3)+a(n-3)=2an,当n>5时,a(n+2)+a(n-4)=2a(n-1),当n>6时,a(n+1)+a(n-5)=2a(n-2),,当n>7时,an+a(n-6)=2a(n-3),当n>7时,则an,a(n-3),a(n-6)成等差数列。推出:即n≥8时,a(n+6),a(n+3),an,a(n-3),a(n-6)成等差数列.
所以又当k=4时,即当n>k=4时,a(n+5)+a(n-3)=2a(n+1),当n>5时,a(n+4)+a(n-4)=2an,
当n>6时,a(n+3)+a(n-5)=2a(n-1),当n>7时a(n+2)+a(n-6)=2a(n-2),当n>7时,则a(n+2),a(n-2),a(n-6)成等差数列.又推出:即n≥8时,a(n+6),a(n+2),a(n-2),a(n-6)成等差数列.
……后面n≥8时,a(n+2)-an=an-a(n-2),当n≥9时,a(n+1)-a(n-1)=a(n-1)-a(n-3),即a(n+1)+a(n-3)=2a(n-1),即n≥9时,a(n+3),a(n+1),a(n-1),a(n-3)成等差数列.
【这个方法不好,有点像在拼凑,网上还有另外一种解法,如下:】
Sn + 3 + Sn -3 = 2(Sn+ S3), Sn + 4+ Sn -2 = 2(Sn + 1+ S3)an + 4 + an -2 = 2an + 1(n≥4)
数列{a3n -1}、{a3n}、{a3n + 1}(n≥1)都是等差数列
Sn- a1为三个等差数列前若干项之和的和Sn = an2 + bn + c(a、b、c为常数);
S1 = a1, Sn + 3 + Sn - 3 =2(Sn+ S3), Sn + 4 + Sn - 4=2(Sn+ S4) a + b + c = 1, 3b + c = 0, 4b + c = 0,a = 1, b = c = 0Sn = n2 an = Sn - Sn - 1(S0 = 0)= n2 -(n -1)2 = 2n -1.
由题设知,当k∈ M ={3,4}且n>k时,Sn+k + Sn -k = 2Sn + 2Sk且Sn+1+k + Sn +1-k = 2Sn+1 + 2Sk,,两式相减得an+1+k + an +1 -k = 2an+1,即an+1+k - an+1 = an+1 - an +1 -k .所以当n≥8时,an - 6, an - 3, an, a n+ 3, an+ 6成等差数列,且an - 6, an - 2, an + 2, an + 6也成等差数列.从而当n≥8时,2an = an + 3+ an -3 = an + 6 + an - 6(*),且an + 6 + an - 6 = an + 2 + an -2 .所以当n≥8时,2an = an + 2 + an -2 ,即an + 2 - an = an - an -2 .
于是当n≥9时,an -3, an - 1, an + 1, an + 3成等差数列,从而an + 3 + an -3 = an + 1 + an - 1 .
故由(*)知2an = an+ 1 + an -1,即an+ 1 - an = an - an -1.当n≥9时,设d = an- an -1.
当2≤m≤8时,m + 6≥8,从而由(*)式知2am + 6 = am+ am + 12,
故2 am + 7 = am + 1+ am + 13.从而2(am + 7 - am + 6)= am + 1 -am +(am + 13 - am + 12),于是am + 1 - am = 2d–d = d.因此,an + 1 –an = 2d对任意n≥2都成立.
又由Sn + k + Sn - k -2Sn = 2Sk(k∈{3,4})可知(Sn + k - Sn)-(Sn- Sn -k)= 2Sk ,
故9d = 2 S3且16d = 2S4.解得a4 =d,从而a2 =d,a1 =d.因此,数列{an}为等差数列.
由a1 = 1知d = 2,所以数列{an}的通项公式为an = 2n -1.
高中数学那个坑爹啊 才高考完的发现大学数学没难度 就是应付考试 高中数学是选拔考试所以题都不简单 另外关于你的提问我实在不想去回想那些恶心的数学题 尤其是20 21 22这样的大题
http://zhidao.baidu.com/question/287360797.html?an=0&si=2
好难,连答案都看不懂