cos(π-a)=-cosa=-3/5 cosa=3/5 sina=4/5 tana=4/3 cota=3/4
tan(2π+a)+cot(π-a)/sin(a-2π )
=tana-cota/sin
=4/3-(3/4)/(4/5)
=19/48
tan(2π+a)+cot(π-a)/sin(a-2π )
=tan a-cot a/sin a
cos(π-a)=-cos a=-3/5,
所以cos a=3/5,又0原式=4/3-(3/4)/(4/5)=19/48
解:cos(π-a)=-3/5所以cosa=3/5
因为0 tan(2π+a)+cot(π-a)/sin(a-2π )=tana-cota/sina=19/48