已知函数f(x)=4^x+a.2^x+a+1 ,(1)若a=-1,求f(x)=0的解的情况(2)若f(x)=0在R上有实数解,求a的取值范围

2024-12-26 18:46:08
推荐回答(5个)
回答1:

(1)若a=-1时,f(x)=4^x-2^x 令f(x)=0 则4^x-2^x=0 解得x=0
(2)令t=2^x 则f(x)=t^2+at+a+1 t>0 令f(x)=0 则t^2+at+a+1=0在R上有实数解
所以两根之和-a>0 即a<0;两根之积a+1>0 即a>-1
又△=a^2-4a-4>=0 解得a<=2-2√2或a>=2+2√2
综上所述 -1

回答2:

解:1.当a=-1时,f(x)=4^x+a.2^x+a+1 =4^x-2^x=0解得x=0
2.f(x)=4^x+a.2^x+a+1 =(2^x)^2+a*2^x+a+1=(2^x+a/2)^2-a^2/4+a+1=0要使有实数解,那么2^x=t>0那么
方程t^2+a*t+a+1=0至少有一个实数根,设t1,t2为方程的两根则有t1+t2=-a>0,t1t2=a+1>0或t1t2=a+1>0,且△a^2-4(a+1)≥0,得到a≤2-2根号2

回答3:

解:
(1)a=-1,则f(x)=4^x-2^x=2^x(2^x-1)=0,解得x=0。
(2)令2^x=t,则f(x)=0,即为t²+at+a+1=0 ,要使f(x)=0在R上有实数解,必须方程t²+at+a+1=0有解且至少有一个整数解,解得 t1,2=[-a±√(a^2-4a-4)]/2。显然只需[-a+√(a^2-4a-4)]/2>0,即a<-1;另须Δ=a^2-4a-4>=0,即a>=2+√2或a<=2-√2。
于是可知a的取值范围应为a<-1。

回答4:

f(x)=4^x+a.2^x+a+1=0
令2^x=t,则t>0,f(x)=0为:t²+at+a+1=0 t=(-a±√a^2-4a-4)/2>0,-a+√a^2-4a-4>0
a^2-4a-4≥0(1)
√a^2-4a-4>a(2)
由(1)得a≥2+2√2或a≦2-2√2
由(2)得a>0或a<0
解得a≥2+2√2或a≦2-2√2

回答5:

f(x)=4^x+a.2^x+a+1
令2^x=t,则f(x)=0,即为:t²+at+1=0 t=2^x>0
判别式=a²-4>=0 因为t=2^x>0
a>=2不成立 a<=-2
所以a只有 a<=-2