已知a+b=1,ab=3⼀16,求a^3 -2a^2 b^2 + b^3的值

2024-12-15 16:00:03
推荐回答(3个)
回答1:

a^3 -2a^2 b^2 + b^3
=a^3 + b^3 -2a^2 b^2
=(a+b)(a²-ab+b²)-2a²b²
=(a+b)[(a+b)²-3ab]-2(ab)²
=1×(1²-3×3/16)-2×(3/16)²
=1-9/16-2×9/256
=7/16-9/128
=56/128-9/128
=47/128

回答2:

a^3 -2a^2 b^2 + b^3
=(a+b)(a2-ab+b2)-2a2b2
=(a+b)((a+b)2-3ab)-2a2b2
=1*(1-9/16)-2* 9/256
=47/128

回答3:

∵a+b=1,ab=3/16,
∴a^3 -2a^2 b^2 + b^3=a^3 + b^3-2a^2 b^2=(a+b)^3-3ab(a+b)-2(ab)^2=1-9/16-18/256=47/128