如何证明达布定理与区间上可导函数的导数没有第一类间断点这个论断是等价的。

2024-12-26 17:22:00
推荐回答(1个)
回答1:

利用Darboux定理的结论“导函数具有介值性”推出没有跳跃型间断点是很容易的,直接用反证法就行了,跳跃的局部不可能满足介值性。
但是反过来等价性是不行的,没有跳跃型间断点不能保证介值性质,所以必须把导函数的条件加上去,这样一来就不能完全算做用“导函数没有跳跃型间断点”来推出Darboux定理了。

如果你不会证明Darboux定理,那么我可以告诉你证法,对于f'(a)和f'(b)之间的任何实数t,构造连续函数g(x)=f(x)-tx,然后对区间(a,b)上的最值点用Fermat引理就行了。