∫(1->2) x^-3 dx,基本公式:∫ x^n dx = x^(n+1) / (n+1) + C,(n,C都是任意常数)= x^(-3+1) / (-3+1):(1->2)= x^-2 / -2:(1->2)= -1/(2x²):(1->2)= -1/(2*2²) - [-1/(2*1)]= -1/8 + 1/2= 3/8
另f(x)=-1/2(x^-2)则定积分为f(2)-f(1)