计算(1⼀2+1⼀3+...+1⼀2011)(1+1⼀2+1⼀3+...+1⼀2010)-(1+1⼀2+...1⼀2011)(1⼀2+1⼀3+...+1⼀2010)

2025-01-08 10:30:51
推荐回答(3个)
回答1:

设a= 1+1/2+...1/2011
(1/2+1/3+...+1/2011)(1+1/2+1/3+...+1/2010)-(1+1/2+...1/2011)(1/2+1/3+...+1/2010)
=(a-1)(a-1/2011)-a(a-1-1/2011)
=1/2011

回答2:

(1/2+1/3+...+1/2011)(1+1/2+1/3+...+1/2010)-(1+1/2+...1/2011)(1/2+1/3+...+1/2010)
=(1/2+1/3+....1/2011)+(1/2+1/3+1/4+.....1/2011)(1/2+......1/2010)-(1+1/2+...1/2011)(1/2+1/3+...+1/2010)
=(1/2+1/3+....1/2011)+(1/2+1/3+1/4+.....1/2010)【(1/2+......1/2011)-(1+1/2+...1/2011)】
=(1/2+1/3+....1/2011)-(1/2+1/3+1/4+.....1/2010)
=1/2011

回答3:

0