怎样求不定积分:∫(x^5+2x^2+1)⼀(x^3-x)dx

2025-01-04 15:36:39
推荐回答(3个)
回答1:

原式=∫(x^2+1)dx+∫(2x^2+x+1)dx/(x^3-x)
=x^3/3+x+(2/3) ∫d(x^3-x)/(x^3-x)+∫(x+5/3)dx/(x^3-x)
=x^3/3+x+(2/3)ln|x^3-x|+∫dx/(x^2-1)+(5/3) ∫dx/[x(x+1)(x-1)
=x^3/3+x+(2/3)ln|x^3-x|+(1/2)ln|(x-1)/(x+1)|+(5/3)* ∫[(-1/x)+(1/2)/(x+1)+(1/2)/(x-1)]
=x^3/3+x+(2/3)ln|x^3-x|+(1/2)ln|(x-1)/(x+1)|-(5/3)ln|x|+(5/6)ln|x+1|+(5/6)ln|x-1|+C
= x^3/3+x+(2/3)ln|x^3-x|+(4/3)ln|(x-1)+(1/3)ln|x+1)|-(5/3)ln|x|+C。
注:1/[x(x+1)(x-1)用待定系数法得出系数为-1/x,(1/2)/(x+1),(1/2)/(x-1),
(x^5+2x^2+1)/(x^3-x)可用分式除法,也可以配成x^5-x^3+x^3-x+x+2x^2+1形式。

回答2:

(x^5+2x^2+1)/(x^3-x)=(x^4)/(x-1)+(2/3)(1/(x-1)+1/(x+1))-1/x
=[(x-1)(x^3+x^2+x+1)+1]/x+(2/3)(1/(x-1)+1/(x+1))-1/x
∫(x^5+2x^2+1)/(x^3-x)dx=∫{[(x-1)(x^3+x^2+x+1)+1]/x+(2/3)(1/(x-1)+1/(x+1))-1/x } dx
=(1/4)x^4+(1/3)x^3+(1/2)x^2+x+(3/2)Lnlx+1l+(5/2)Lnlx-1l-Lnlxl+c

回答3:

答案来了