1/x1+1/x2=(x1+x2)/x1x2=-b/c=-3/(-m+1)=3,所以m=2 。祝学习进步!
解:设2x²+3x-m+1=0的两根分别为X1,X2,则:
X1+X2=-3/2; X1*X2=(-m+1)/2.
1/X1+1/X2=3,即(X1+X2)/(X1*X2)=3,(-3/2)/[(-m+1)/2]=3,m=2.
2x²+3x-m+1=0中 a=2,b=3,c=1-m
设两根为x1,x2,那么有
1/x1+1/x2=3
又1/x1+1/x2=(x1+x2)/(x1x2)=(-b/a)/(c/a)=-b/c=-3/(1-m)=3得到m=2
设两根分别为X1,X2
则有X1+X2=-3/2,X1·X2=(-m+1)/2
由题意有
1/X1+1/X2=3
则通分得(X1+X2)/(X1·X2)=3
即3/(m-1)=3
解得m=2
X1+X2=-b/a=-1.5,x1·x2=c/a=(1-m)/2
1/X1+1/X2=X1+X2/x1x2=3,∴-1.5/[(1-m)/2]=3
m=2
m=1