求c或者c++的神经网络车牌识别代码,参考一下

毕设做到一半不会做了
2025-02-25 09:07:22
推荐回答(1个)
回答1:

  #pragma hdrstop
  #include
  #include
  const A=30.0;
  const B=10.0;
  const MAX=500; //最大训练次数
  const COEF=0.0035; //网络的学习效率
  const BCOEF=0.001;//网络的阀值调整效率
  const ERROR=0.002 ; // 网络训练中的允许误差
  const ACCURACY=0.0005;//网络要求精度
  double sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},
  {5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},
  {5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},
  {5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},
  {5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},
  {5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},
  {5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},
  {1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},
  {1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},
  {1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},
  {1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},
  {1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},
  {1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},
  {1,3,2,7.219},{1,5,3,5.724}};
  double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];
  double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差
  double is; //全体样本均方差
  int count,a;
  void netout(int m, int n);//计算网络隐含层和输出层的输出
  void calculd(int m,int n); //计算网络的反向传播误差
  void calcalwc(int m,int n);//计算网络权值的调整量
  void calcaulbc(int m,int n); //计算网络阀值的调整量
  void changew(int m,int n); //调整网络权值
  void changeb(int m,int n);//调整网络阀值
  void clearwc(int m,int n);//清除网络权值变化量wc
  void clearbc(int m,int n);//清除网络阀值变化量bc
  void initialw(void);//初始化NN网络权值W
  void initialb(void); //初始化NN网络阀值
  void calculdiffer(void);//计算NN网络单个样本误差
  void calculis(void);//计算NN网络全体样本误差
  void trainNN(void);//训练NN网络
  /*计算NN网络隐含层和输出层的输出 */
  void netout(int m,int n)
  {
  int i,j,k;
  //隐含层各节点的的输出
  for (j=1,i=2;j<=m;j++) //m为隐含层节点个数
  {
  netin[i][j]=0.0;
  for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量
  netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
  netin[i][j]=netin[i][j]-b[i][j];
  o[i][j]=A/(1+exp(-netin[i][j]/B));
  }
  //输出层各节点的输出
  for (j=1,i=3;j<=n;j++)
  {
  netin[i][j]=0.0;
  for (k=1;k<=m;k++)
  netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
  netin[i][j]=netin[i][j]-b[i][j];
  o[i][j]=A/(1+exp(-netin[i][j]/B)) ;
  }
  }
  /*计算NN网络的反向传播误差*/
  void calculd(int m,int n)
  {
  int i,j,k;
  double t;
  a=count-1;
  d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);
  //隐含层的误差
  for (j=1,i=2;j<=m;j++)
  {
  t=0.00;
  for (k=1;k<=n;k++)
  t=t+w[i+1][j][k]*d[i+1][k];
  d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);
  }
  }
  /*计算网络权值W的调整量*/
  void calculwc(int m,int n)
  {
  int i,j,k;
  // 输出层(第三层)与隐含层(第二层)之间的连接权值的调整
  for (i=1,k=3;i<=m;i++)
  {
  for (j=1;j<=n;j++)
  {
  wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
  }
  // printf("\n");
  }
  //隐含层与输入层之间的连接权值的调整
  for (i=1,k=2;i<=m;i++)
  {
  for (j=1;j<=m;j++)
  {
  wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
  }
  // printf("\n");
  }
  }
  /*计算网络阀值的调整量*/
  void calculbc(int m,int n)
  {
  int j;
  for (j=1;j<=m;j++)
  {
  bc[2][j]=BCOEF*d[2][j];
  }
  for (j=1;j<=n;j++)
  {
  bc[3][j]=BCOEF*d[3][j];
  }
  }
  /*调整网络权值*/
  void changw(int m,int n)
  {
  int i,j;
  for (i=1;i<=3;i++)
  for (j=1;j<=m;j++)
  {
  w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];
  //为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9
  printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);
  }
  for (i=1;i<=m;i++)
  for (j=1;j<=n;j++)
  {
  w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];
  printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);
  }
  }
  /*调整网络阀值*/
  void changb(int m,int n)
  {
  int j;
  for (j=1;j<=m;j++)
  b[2][j]=b[2][j]+bc[2][j];
  for (j=1;j<=n;j++)
  b[3][j]=b[3][j]+bc[3][j];
  }
  /*清除网络权值变化量wc*/
  void clearwc(void)
  {
  for (int i=0;i<4;i++)
  for (int j=0;j<10;j++)
  for (int k=0;k<10;k++)
  wc[i][j][k]=0.00;
  }
  /*清除网络阀值变化量*/
  void clearbc(void)
  {
  for (int i=0;i<4;i++)
  for (int j=0;j<10;j++)
  bc[i][j]=0.00;
  }
  /*初始化网络权值W*/
  void initialw(void)
  {
  int i,j,k,x;
  double weight;
  for (i=0;i<4;i++)
  for (j=0;j<10;j++)
  for (k=0;k<10;k++)
  {
  randomize();
  x=100+random(400);
  weight=(double)x/5000.00;
  w[i][j][k]=weight;
  }
  }
  /*初始化网络阀值*/
  void initialb(void)
  {
  int i,j,x;
  double fazhi;
  for (i=0;i<4;i++)
  for (j=0;j<10;j++)
  {
  randomize();
  for (int k=0;k<12;k++)
  {
  x=100+random(400);
  }
  fazhi=(double)x/50000.00;
  b[i][j]=fazhi;
  }
  }
  /*计算网络单个样本误差*/
  void calculdiffer(void)
  {
  a=count-1;
  differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);
  }
  void calculis(void)
  {
  int i;
  is=0.0;
  for (i=0;i<=19;i++)
  {
  o[1][1]=sample[i][0];
  o[1][2]=sample[i][1];
  o[1][3]=sample[i][2];
  netout(8,1);
  is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);
  }
  is=is/20;
  }
  /*训练网络*/
  void trainNN(void)
  {
  long int time;
  int i,x[4];
  initialw();
  initialb();
  for (time=1;time<=MAX;time++)
  {
  count=0;
  while(count<=40)
  {
  o[1][1]=sample[count][0];
  o[1][2]=sample[count][1];
  o[1][3]=sample[count][2];
  count=count+1;
  clearwc();
  clearbc();
  netout(8,1);
  calculdiffer();
  while(differ>ERROR)
  {
  calculd(8,1);
  calculwc(8,1);
  calculbc(8,1);
  changw(8,1);
  changb(8,1);
  netout(8,1);
  calculdiffer();
  }
  }
  printf("This is %d times training NN...\n",time);
  calculis();
  printf("is==%f\n",is);
  if (is  }
  }
  //---------------------------------------------------------------------------
  #pragma argsused
  int main(int argc, char* argv[])
  {
  double result;
  int m,test[4];
  char ch='y';
  cout<<"Please wait for the train of NN:"<  trainNN();
  cout<<"Now,this modular network can work for you."<  while(ch=='y' || ch=='Y')
  {
  cout<<"Please input data to be tested."<  for (m=1;m<=3;m++)
  cin>>test[m];
  ch=getchar();
  o[1][1]=test[1];
  o[1][2]=test[2];
  o[1][3]=test[3];
  netout(8,1);
  result=o[3][1];
  printf("Final result is %f.\n",result);
  printf("Still test?[Yes] or [No]\n");
  ch=getchar();
  }
  return 0;
  }