3(a^2+b^2+c^2)=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac移项得2a^2+2b^2+2c^2-2ab-2bc-2ac=0(a-b)^2+(b-c)^2+(a-c)^2=0a-b=0,b-c=0,a-c=0a=b=c
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=3(a^2+b^2+c^2)所以2a^2+2b^2+2c^2-2ab-2bc-2ac=0(a-b)^2+(b-c)^2+(a-c)^2=0所以a=b=c即证