为什么可逆矩阵一定能化为同阶单位矩阵? 还有 什么叫左乘换行 右乘换列 ?

2025-03-31 15:10:20
推荐回答(1个)
回答1:

任一A矩阵都可化为等价标准形
即存在 可逆矩阵P,Q 使得 PAQ =
Er 0
0 0

当A可逆时, 等式左边行列式 = |P||A||Q| ≠ 0
所以右边的标准形一定没有0行, 即r=n.
即有 PAQ = E.
所以 可逆矩阵一定能化为同阶单位矩阵E.

左乘换行 右乘换列
是指
用初等矩阵左乘矩阵A, 相当于对A实施一次相应的初等行变换
用初等矩阵右乘矩阵A, 相当于对A实施一次相应的列等行变换