1/2+1/3+...+1/1999)*(1+1/2+...1/1998)-(1+1/2+...+1/1999)*(1/2+1/3+...+1/1998)
=(1/2+1/3+...+1/1998)*(1+1/2+...1/1998)+1/1999*(1+1/2+...1/1998)-(1/2+1/3+...+1/1998)*(1/2+1/3+...+1/1998)-1/1999*(1/2+1/3+...+1/1998)
=1/2+1/3+...+1/1998+1/1999
我们记1/2+1/3+……+1/1998=A
所以原式就可写为(A+1/1999)(A+1)-A(1+A+1/1999)
=A²+(1+1/1999)A+1/1999-A²-(1+1/1999)A
=1/1999
答案是: 1/2+1/3+...+1/1998+1/1999
假设1+1/2﹢1/3﹢…﹢1/1999=a
那么原式=(a-1)(a-1/1999)-(a)(a-1-1/1999)
=a²-a-a/1999+1/1999-a²+a+a/1999
=1/1999
(1/2+1/3+…+1/1999)(1+1/2+…+1/1998)-(1+1/2+……+1/1999)(1/2+1/3+……+1/1998)
=(1/2+1/3+…+1/1999](1+1/2+…+1/1998)-[1+(1/2+……+1/1999)](1/2+1/3+……+1/1998)]
=(1/2+1/3+…+1/1999)[(1+1/2+…+1/1998)-(1/2+1/3+……+1/1998)]
-(1/2+1/3+…+1/1998)
=(1/2+1/3+…+1/1999)- (1/2+1/3+……+1/1998)
=1/1999