第一题:
令e^(2x)=y,则:2x=lny,∴x=(1/2)lny,∴dx=[1/(2y)]dy。
∴原式=∫{[1/√(1+y)][1/(2y)]}dy=(1/2)∫{1/[y√(1+y)]}dy。
再令√(1+y)=z,则:y=z^2-1,∴dy=2zdz。
∴原式=∫{z/[(z^2-1)z]}dz=∫[1/(z^2-1)]dz
=(1/2)∫[1/(z-1)]-[1/(z+1)]dz
=(1/2)∫[1/(z-1)]d(z-1)-(1/2)∫[1/(z+1)]d(z+1)
=(1/2)ln(z-1)-(1/2)ln(z+1)+C
=(1/2)ln[√(1+y)-1]-(1/2)ln[√(1+y)+1]+C
=(1/2)ln{√[1+e^(2x)]-1}-(1/2)ln{√[1+e^(2x)]+1}+C
第二题:
原式=(1/2)∫{(cosx)^2/[(2-(sin2x)^2]}d(2x)
=(1/4)∫{[2(cosx)^2-1+1]/[(2-(sin2x)^2]}d(2x)
=(1/4)∫{(cos2x+1)/[(2-(sin2x)^2]}d(2x)
=(1/4)∫{[cos2x/[(2-(sin2x)^2]}d(2x)
+(1/4)∫{1/[(2-(sin2x)^2]}d(2x)
=(1/4)∫{1/[2-(sin2x)^2]}dsin2x+(1/2)∫{1/[(1+(cos2x)^2]}dx
=(√2/16)∫[1/(√2+sin2x)]dsin2x+(√2/16)∫[1/(√2-sin2x)]dsin2x
+(1/2)∫{1/[1+(cos2x)^2]}dx
=(√2/16)∫[1/(√2+sin2x)]d(√2+sin2x)
-(√2/16)∫[1/(√2-sin2x)]d(√2-sin2x)
+(1/2)∫{1/[1+(cos2x)^2]}dx
=(√2/16)[ln(√2+sin2x)-ln(√2-sin2x)]
+(1/2)∫{1/[1+(cos2x)^2]}dx
∵{(1/√2)arctan[(1/√2)tan2x]}′
=(1/√2){1/[1+(1/2)(tan2x)^2]}[(1/√2)tan2x]}′
={1/[2+(tan2x)^2]}[1/(cos2x)^2](2x)′
=2/[2(cos2x)^2+(sin2x)^2]
=2/[1+(cos2x)^2]
∴∫{1/[1+(cos2x)^2]}dx=(1/2)(1/√2)arctan[(1/√2)tan2x]+C
=(√2/4)arctan[(1/√2)tan2x]+C
∴(1/2)∫{1/[1+(cos2x)^2]}dx=(√2/8)arctan[(1/√2)tan2x]+C
∴原式=(√2/16)[ln(√2+sin2x)-ln(√2-sin2x)]+(√2/8)arctan[(1/√2)tan2x]+C
∫dx/√(1+e^2x)
e^2x=u 2x=lnu x=lnu/2 dx=du/(2u)
=∫du/2u(1+u)
=(1/2)∫du/(u*(1+u))
=(1/2)∫du/u-(1/2)∫du/(u+1)
=(1/2)ln[u/(u+1)] +C
u=e^2x
=(1/2)ln[(e^2x)/(1+e^2x)] +C
∫[(cosx)^2/(sin2x)^2+2(cos2x)^2] dx
=∫[(cosx/sin2x)^2+2cos(2x)^2 ] dx
=∫dx/(2sinx)^2 +∫(cos2x)^2d(2x)
=(1/4)∫[(cotx)^2+1]dx +∫(1/2)(1+cos4x)d(2x)
=(1/4)∫(cosx)^2dx/(sinx)^2+x/4 +x+(sin4x)/4
=(-1/4)∫cosxd(1/sinx)+5x/4+(sin4x)/4
=(-1/4)cosx/sinx+(1/4)∫(1/sinx)dcosx +5x/4+(sin4x)/4
=(-1/4)cosx/sinx-(1/4)x+5x/4+(sin4x)/4+C
=(-1/4)cosx/sinx+x+(sin4x)/4+C