平方和公式1^2+2^2+~+n^2如何证明?

数学归纳法的方法就不要用了,我想知道直接证明怎么证
2024-12-20 07:14:50
推荐回答(4个)
回答1:

求证1²+2²+3²+.........+n²==n(n+1)(2n+1)/6
证明:∵(k+1)³=k³+3k²+3k+1
==>k²=[(k+1)³-k³]/3-k-1/3
∴1²=(2³-1³)/3-1-1/3
2²=(3³-2³)/3-2-1/3
3²=(4³-3³)/3-3-1/3
...........
n²=[(n+1)³-n³]/3-n-1/3
故1²+2²+3²+.........+n²
={[(2³-1³)/3-1-1/3]+[(3³-2³)/3-2-1/3]+[(4³-3³)/3-3-1/3]+......+[[(n+1)³-n³]/3-n-1/3]}
=[(n+1)³-1³]/3-(1+2+3+......+n)-n/3
=n(n²+3n+3)/3-n(n+1)/2-n/3
=n[2(n²+3n+3)-3(n+1)-2]/6
=n(2n²+3n+1)/6
=n(n+1)(2n+1)/6。证毕。

回答2:

(n+1)^3-n^3=3n^2+3n+1,   
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1   
..............................   
3^3-2^3=3*(2^2)+3*2+1   
2^3-1^3=3*(1^2)+3*1+1.   
把这n个等式两端分别相加,得:   
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,   
由于1+2+3+...+n=(n+1)n/2,   
代入上式得:   
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n   
整理后得:   
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6

回答3:

有一个规律,这个类型数列的和式是比其高一次的式子,所以设其和式为An^3+Bn^2+Cn+D,再取特殊值列四个方程求解.

回答4:

1²+2²+3²+.........+n²=n(n+1)(2n+1)/6
证明:1²+2²+3²+.........+n²={[(2³-1³)/3-1-1/3]+[(3³-2³)/3-2-1/3]+[(4³-3³)/3-3-1/3]+......+[[(n+1)³-n³]/3-n-1/3]}=[(n+1)³-1³]/3-(1+2+3+......+n)-n/3=n(n²+3n+3)/3-n(n+1)/2-n/3=n[2(n²+3n+3)-3(n+1)-2]/6
=n(2n²+3n+1)/6
=n(n+1)(2n+1)/6