设n是正整数,用放缩法证明:1⼀2<=1⼀n+1+1⼀n+2+…+1⼀2n<1

速度、
2024-12-17 14:37:09
推荐回答(5个)
回答1:

1/2<=1/n+1+1/n+2+…+1/2n<1
先证左面:
n+1≤2n ,所以:1/n+1≥1/2n
n+2≤2n ,所以:1/n+2≥1/2n
同理可得:1/n+1+1/n+2+…+1/2n≥n x1/2n=1/2
再证右面:
n+2>n+1,所以:1/n+2<1/n+1
n+3>n+1,所以:1/n+2<1/n+1
同理可得:1/n+1+1/n+2+…+1/2n因n>0,所以:n可得:1/n+1+1/n+2+…+1/2n<1
即1/2<=1/n+1+1/n+2+…+1/2n<1得证!

回答2:

证明:∵n∈N..n≥2.∴1/(n+1)+1/(n+2)+......+1/2n<1/(n+1)+1/(n+1)+...+1/(n+1)=n/(n+1)<1
又f(n)=1/(n+1)+1/(n+2)+......+1/2n>1/2n+1/2n+......+1/2n=1/2

回答3:

n=1时,
1/2<=1/2<1
n>1时
1/n+1+1/n+2+…+1/2n>1/2n+1/2n+...+1/2n=n/2n=1/2
1/n+1+1/n+2+…+1/2n<1/n+1/n+...+1/n=n/n=1
所以
1/2<=1/n+1+1/n+2+…+1/2n<1

希望对您有所帮助
如有问题,可以追问。
谢谢您的采纳

回答4:

各项都缩放到1/n就是后一个不等号,都缩放到1/2n就是前一个不等号
具体过程自己会写吧?

回答5:

1/n+1+1/n+2+…+1/2n>=1/2n+1/2n+…+1/2n=n/2n=1/2
1/n+1+1/n+2+…+1/2n<1/n+1+1/n+1+...1/n+1=n/n+1<1