求当x趋于0时 (sinx⼀x)^(1⼀(1-cosx))的极限

2025-01-04 07:36:34
推荐回答(2个)
回答1:

这是 (1 + 无穷小) ^ ∞ 类型
ln【(sinx/x)^(1/(1-cosx)) 】= 1/(1- cosx) * [ ln(sinx) - lnx ]
= [ ln(sinx) - lnx ] / (1- cosx)
lim [ [ ln(sinx) - lnx ] / (1- cosx), x->0 ]
= lim[ (cosx /sinx - 1/x ) / sinx , x->0] = lim[ (x - tanx) / ( x * tanx * sinx, x->0 ]
= lim[ (x - tanx) / x³, x->0]
= lim[ ( 1- sec²x) / (3x²) , x->0] = (-1/3) lim[ tan²x / x² , x->0 ]
= (-1/3)
原式= e^(-1/3)

回答2:

1