高中数学:已知函数f(x)=sin눀x+2sinxcosx+3cos눀x,x∈R

2025-01-07 00:22:58
推荐回答(3个)
回答1:

f(x)=1+2cos^2x+sin2x
=(cos2x+2)+sin2x
=(cos2x+sin2x)+2
=√2sin(2x+π/4)+2
(1)函数f(x)的最小正周期为π、最大值为√2+2;
(2)2kπ-π/2<=2x+π/4<2kπ+π/2时单调递增,即
kπ-3π/8<=x2kπ+π/2<=2x+π/4<2kπ+3π/2时单调递减,即
kπ+π/8<=xk为整数。

回答2:

f(x)=sin²x+2sinxcosx+3cos²x
=sin2x+2cos²x+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
(1) 最小正周期=2π/2=π
f(x)最大=2+√2
(2) 单增区间2x+π/4∈[2kπ-π/2, 2kπ+π/2]
x∈[kπ-3π/8, kπ+π/8] k∈Z
希望能帮到你O(∩_∩)O

回答3:

fx=1-2sinx^2+sin2x=cos2x+sin2x=根号2sin(2x+45)+2
1.t=pai,最大值2+根号2
2.2x+45在(-π/2+2kπ,π/2+2kπ)解处即可