1X3分之1 + 3X5分之1 + 5X7分之1 + 7X9分之1.... + 298X301分之1
=1/2×[(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)....+(1/298-1/301)]
=1/2×[1-1/3+1/3-1/5+1/5-1/7+1/7-1/9....+1/298-1/301]
=1/2×[1-1/301]
=150/301
1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+……+1/(299×301)
=(1/2)×[(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)+……+(1/299-1/301)]
=(1/2)×(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+……+1/299-1/301)
=(1/2)×(1-1/301)
=(1/2)×(300/301)
=150/301
(1-1/301)/2=150/301;
说明:
1/(1x3)=(1-1/3)/2; 1/(3x5)=(1/3-1/5)/2; 以此类推,然后把所有东西相加即可
一般这样有规律的求和,采用裂项法来解决。
就是:
1/(1x3)=(1-1/3)/2;
1/(3x5)=(1/3-1/5)/2;
以此类推,然后把所有项相加即可 。
1X3分之1 + 3X5分之1 + 5X7分之1 + 7X9分之1.... + 298X301分之1
=1/2×[(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)....+(1/298-1/301)]
=1/2×[1-1/3+1/3-1/5+1/5-1/7+1/7-1/9....+1/298-1/301]
=1/2×[1-1/301]
=150/301
3X5分之1 =1/3-1/5
原式=1/3+1/3-1/5+1/5-1/7-……+1/298-1/301
=1/3+1/3-1/301=2/3-1/301
=602/903-3/903
=599/903
题目表述不清若为1/3+1/15+。。。则1L是对的,若1/3+3/5+5/7+。。。则:
(1-2/3)+(1-2/5)+(1-2/7)+。。(1-299/301)
=(301-1)/2-2×(1/3+1/5+。。。。+1/301)
=150-2×()