1/1*3=(1-1/3)/2
1/3*5=(1/3-1/5)/2
..........
所以原式=[(1-1/3)+(1/3-1/5)+(1/5-1/7)+.....+(1/99-1/101)]/2
=(1-1/3+1/3-1/5+1/5-.............+1/99-1/101)/2
=(1-1/101)/2
=50/101
因为1/n*(n-2)=0.5*[1/n-1/(n-2)]
所以原式=0.5*(1-1/3+1/3-1/5+.....+1/99-1/101)
=0.5*(1-1/101)
=50/101