若tanα=2,求sinα-3cosα∕sinα+cosα的值

2024-12-17 02:49:57
推荐回答(3个)
回答1:

tanα=2

则(sinα-3cosα)/(sinα+cosα)
=(sinα/cosα-3)/(sinα/cosα+1)
=(tanα-3)/(tanα+1)
=(2-3)/(2+1)
=-1/3

如果不懂,请Hi我,祝学习愉快!

回答2:

解:因为tanα=sinα/cosα=2
故:(sinα-3cosα)/(sinα+cosα)
=(sinα/cosα-3)/(sinα/cosα+1)(分母同除cosa)
=(tanα-3)/(tanα+1)
=(2-3)/(2+1)
=-1/3

回答3:

tanα=2,,sina=2cosa
(sinα-3cosα)∕(sinα+cosα)=(2cosa-3cosa)/(2cosa+cosa)=-1/3