已知函数f(x)=√3⼀2sin2x-cos^2x-1⼀2,x∈R

2025-01-05 17:09:56
推荐回答(3个)
回答1:

解:先用降幂公式把函数化为:f(x)=√3/2sin2x-1/2cos2x-1=sin(2x-π/6)-1
(1)最小值为-2,最小正周期为π
(2)由f(C)=0知sin(2C-π/6)=1,从而可得C=π/3,再由余弦定理知:c^2=a^2+b^2-2abcosC
3=a^2+4a^2-2a*2acosπ/3,解得a=1,故b=2

回答2:

f(x)=√3/2sin2x-cos^2x-1/2
=√3/2sin2x-1/2(cos2x+1)-1/2
=√3/2sin2x-1/2cos2x-1
=sin(2x-π/3)-1
所以f(x)最小值为-2,最小正周期为2π/2=π

回答3:

解:(1)f(x)=sin2x-cos2x-
=sin2x--
=sin2x-cos2x-1=sin(2x-)-1,
∵-1≤sin(2x-)-≤1,
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T==π;
(2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1,
∵0<C<π,∴-<2C-<,
∴2C-=,即C=,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=,
∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②,
联立①②解得:a=1,b=2