正定矩阵为什么是对称矩阵?各位大虾,能详细说明一下么!

2024-12-24 21:43:16
推荐回答(4个)
回答1:

因为在线性代数里,正定矩阵 有时会简称为正定阵。在双线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式,所以也是对称矩阵。

  1. 正定矩阵的广义定义:设M是n阶方阵,如果对任何非零向量z,都有zMz> 0,其中z 表示z的转置,就称M正定矩阵。例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

  2. 正定矩阵的狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zMz> 0。其中z表示z的转置。

回答2:

正定矩阵不一定是实对称阵或Hermite阵,完全可以非对称。
一般教材上只讨论对称正定阵,一方面对于二次型而言研究对称阵比较方便而且足够用了,另一方面非对称的正定阵毕竟特征值要复杂很多,不如对称正定阵的性质好,所以普通教材上就不讲了。

回答3:

呵呵 电灯学的比较深, 太专业了, 反而把简单的搞复杂了!

线性代数范围内, 正定矩阵的前提就是对称的

因为正定矩阵的定义来源于正定二次型, 而二次型的矩阵是对称矩阵

回答4:

首先你x*Mx要跟0比较,所以x*Mx必须是实数(x∈C是复数域上的向量,所以用x*Mx,而不是x'Mx)。任何矩阵都可以写成H+iK的形式(H、K是Hermite矩阵),假设M=H+iK,x*Mx=x*(H+iK)x=x*Hx+ix*Kx (1),Hermite矩阵的特征值都是实数,Hermite矩阵的二次型也是实数(自己证吧,很简单)。(1)要是实数,所以x*Kx=0,K=0.所以M=H也是Hermite矩阵。所以说在复数域上正定矩阵必然是Hermite矩阵(A=A*,A*就是A的共轭转置)。

至于楼上说M= 1 1 ,那你把复向量x=(i,1)带到x*Mx里面去试试看看等于多少,答案是一个复
-1 1

数,就不能跟0比较了呗,正定也就无从谈起。

所以说,复数域上的正定矩阵一定是Hermite矩阵。有疑问的可以问我,大家共同探讨。