已知函数f(x)=根号3⼀4sinx-1⼀4cosx.

2024-12-16 14:50:25
推荐回答(2个)
回答1:

解1:因为cosx=-5/13,x∈【π/2,π】,所以sinx=12/13
f(x)=√3/4(12/13)-1/4(-5/13)=(12√3+5)/52
2:把f(x)化简为:f(x)=1/2(√3/2sinx-1/2cosx)
=1/2(cosπ/6sinx-sinπ/6cosx)
=1/2sin(x-π/6)

将函数f(x)的图像向右平移m个单位则变为:1/2sin(x-m-π/6)
若图像关于原点对称,则f(0)=0(你可以根据奇函数性质推出,我经常用这个,你也可以看正弦函数图像得出)
所以sin(-m-π/6)=0
-m-π/6=2Kπ或-m-π/6=2Kπ+π(K为整数)
m=-2kπ-π/6或m=-2kπ-7π/6(K为整数)
因为0<m<π 所以你分开求K的取值使得K为整数(你也可以把K取1 0 -1带进去看,可发现符合的)所以m=5π/6

回答2:

cosx=-5/13,x∈【π/2,π】,sinx=12/13
f(x)=√3/4sinx-1/4cosx=(12√3-5)/52
f(x)=5/8(2√3/5sinx-2/5cosx)
=5/8*sin(x-m)
cosm=2√3/5,sinm=2/5
可知0<m<π/2
m=arcsin(2/5)