证明:过点B作BG⊥BC,垂足为B,交CE的延长线于点G ∴∠CBG=90°
∵△ABC是等腰三角形
∴AB=AC ∠CAB=∠CBA=45°∴∠EBG=∠CBA=45°
在直角△ACD中:∵CF⊥AD ∴∠CAD+∠CDA=90°∠CDA+∠DCF=90°∴∠CAD=∠DCF 又∵∠ACD=∠CBG=90°∴△ACD≌△CBG∴∠ADC=∠CGB CD=BG
∵AD是BC边上的中线 ∴CD=BD ∴BD=BG 又∵BE=BE∴△BDE≌BGE
∴∠BDE=∠BGE ∴∠ADC=∠BDE