1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6所以上式=100*101*201/6=338350
(n+1)^3 - n^3 = n^3 + 3n^2 + 3n + 1n^3 - (n-1)^3 = ...。。。2^3 - 1^3 = 1^3 + 3*1^2 + 3*1 + 1所有式子加起来得n^2求和 = n(n+1)(2n+1)/6