x1,x2为方程x^2+3x+1=0的两实根
x1+x2=-3
X1²+3X1+1=0
X1²=-1-3X1
X1²-3X2+20=-1-3X1-3X2+20=19-3(X1+X2)=19-3*(-3)=28
x1+x2=-3
x1^2-3x2+20
=x1^2-3(-3-x1)+20
=x1^2+3x1+9+20
=x1^2+3x1+29
=-1+29
=28
x1^2+3x1=-1, x1+x2=-3
x1^2+3x1-3(x1+x2)+20=-1+3*(-3)+20=10
由韦达定理得x1+x2=-3
x1^2= -(3x1+1)代入后面的式子得 -3(x1+x2)+19=28
x1,x2为方程x^2+3x+1=0的两实数根x1+x2=-3x1^2+3x1=-1x1^2-3x2+20=x1^2+3x1-3x1-3x2+20=x1^2+3x1-3(x1+x2)+20=-1+9+20=28