在三角形ABC中,cos(A-B)+cosC=1-cos2C ,试判定三角形形状

要详细步骤
2025-02-24 22:45:13
推荐回答(2个)
回答1:

cos(A-B)=cosA*cosB+sinA*sinB
cosC=-cos(A+B)=-cosA*cosB+sinA*sinB
原式左边=2*sinA*sinB
原式右边=1-(1-2sinC*sinC)=2*sinC*sinC
sinA*sinB=sinC*sinC
a*b=c*c=a*a+b*b-2*a*b*cosC
a*a+b*b=a*b*(1+2*cosC)≥2ab
1>cosC≥1/2,0cos(A-B)=-2*cosC*cosC-cosC=-2(cosC-1/4)^2+1/8
函数f(x)=-2*(x-1/4)^2+1/8在定义域[1/2,1)上的值域为(-1,0]
所以,-1A≤B,即,
A-B≤0,0≤B-A
2π/3≤A+B=π-C<π
A-B≤0与A+B<π相加得,00≤B-A与2π/3≤A+B相加得,π>B≥π/3
A>0与C≥π/3相加得,A+C≥π/3
所以,π/3≤B≤2*π/3,后面的等号只有当A=B时成立,舍去,即,π/3≤B<2*π/3
综上所述,当A=B时,C=π/3,三角形ABC为等边三角形,
当A、B不相等时,只有A

回答2:

A+B+C=π,
∴cos(A-B)+cosC=1-cos2C
→2cos[(A+C-B)/2]cos[(A-B-C)/2]=2sin²C
→2cos[(π-2B)/2]cos[(2A-π)/2=2sin²C
→sinBsinA=sin²C
→ab=c².
∴cosC=(a²+b²-c²)/2ab
≥(2ab-ab)/2ab
=1/2.
∴0