f(x)=sin平方x+2根号3sin(x+π⼀4)cos(x-π⼀4)-cos平方x-根号3

2025-01-07 15:29:05
推荐回答(2个)
回答1:

解:
前提掌握:
sinx*sinx+cosx*cosx=1
cos2x=2*cosx*cosx-1=1-2*sinx*sinx
cos(x-π/4)=-sin(x-π/4+π/2)=-sin(x+π/4)
sin(x+π/4)*sin(x+π/4)=sinx*sinx
asinx+bcosx=根号下(a*a+b*b)sin(x+角度) 其中tan角度=b/a
好,开始做题
f(x)=sinx*sinx+2*根3sin(x+π/4)cos(x-π/4)-cosx*cosx-根3
=(sinx*sinx-cosx*cosx)+2*根3sin(x+π/4)cos(x-π/4)-根3
=1-2*cosx*cosx -2根3sin(x+π/4)*sin(x+π/4)-根3
=-cos2x+根3*【1-2sin(x+π/4)*sin(x+π/4)】-根3-根3
=-cos2x+根3*cos(2x+π/2)-2根3
=-cos2x-根3sin2x-2根3
=2sin(2x+π/3)-2根3

1.
化简结束,得最小正周期T=π
设X=2x+π/3,sinX的单调递减区间为[π/2加减2kπ,3π/2加减2kπ]

π/2加减2kπ<=2x+π/3<=3π/2加减2kπ
可得
f(x)的单调递减区间为[-π/12加减kπ,7π/12加减kπ]

2.
由上可得f(x)在(-π/12,5π/12〕上单调递减
当x=-π/12时得最大值 1-2根3 ;
当x=5π/12时得最小值 -1-2根3

即f(x)在(-π/12,5π/12〕的值域为(-1-2根3,1-2根3)

回答2:

(1)化简后为(根号3-1)*cos(2X) 所以T最小为PAI
(2)最小值1-根号3 X=PAI/2 最大值根号3-1 X=PAI/4