已知(cosa+π⼀4)=3⼀5,π⼀2≤a≤3π⼀2 求cos(2a+π⼀4)的值

2024-12-20 13:21:29
推荐回答(1个)
回答1:

(cosa+π/4)=3/5,π/2≤a≤3π,
所以可得a在第三象限内
=cosacosπ/4-sinasinπ/4
=√2/2(cosa-sina)=3/5①
(sina)^2+(cosa)^2=1②
5π/4<a≤3π/2
可解得sina=-7/5√2= -7√2/10,
cosa= -√2/10
cos(a+π/4)=3/5,
sin(a+π/4)=-4/5
cos(2a+π/4)=cos(a+π/4+a)
=cos(a+π/4)cosa-sin(a+π/4)sina
=3/5*( -√2/10)-(-4/5)*( -7√2/10)
= -31√2/50