x²=ma+nb=(ma+nb)(m+n)=m²a+n²b+mn(a+b)y²=m²a+n²b+2mn√(ab)则:x²-y²=mn[a+b-2√(ab)]=mn[√a-√b]²显然,有:x²≥y²,即:x≥y
x²=ma+nb=(ma+nb)(m+n)=m²a+n²b+mn(a+b)y²=m²a+n²b+2mn√(ab)x²-y²=mn[a+b-2√(ab)]=mn[√a-√b]²x²≥y²x≥y