1+2=2*3/2
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+10=10*11/2
所以,
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+10)
=2/(2*3)+2/(3*4)+2/(4*5)+……+2/(10*11)
=2[(1/(2*3)+1/(3*4)+1/(4*5)+……+1/(10*11)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(10*11)=1/10-1/11
所以,
原式=2(1/2-1/3+1/3-1/4+1/4-1/5+……+1/10-1/11)
=2(1/2-1/11)
=9/11
1/1+2+3+...+n
=2/n(n+1)
=2(1/n-1/(n+1))
所以原式=2(1/2-1/10)=4/5
4/5