=4/1*3+16/3*5+36/5*7+...+144/11*13=(1+1+1+1+1+1)+1/1*3+1/3*5+1/5*7+...+1/11*13=6+1/2[(1-1/3)+(1/3-1/5)+...+(1/11-1/13)]=6+1/2(1-1/13)=6+6/13
2的平方/(1×3)+4的平方/(3×5)+6的平方/5×7+……+12的平方/11×13
当n=2
2的平方/(1×3)=n^2/(n-1)(n+1)=n^2/(n^2-1)=1+1/(n^2-1)=1+(1/(n-1)-1/(n+1))/2
2的平方/(1×3)+4的平方/(3×5)+6的平方/5×7+……+12的平方/11×13
=1+(1-1/3)/2+1+(1/3-1/5)/2+1+(1/5-1/7)/2+....+1+(1/11-1/13)/2
=6+(1-1/13)/2
=6又6/13