解:(1)∵AD是小圆的切线,M为切点,∴OM⊥AD,∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴ON⊥BC,BE=BC=5cm,∴N是BC的中点;(2)延长ON交大圆于点E,∵圆环的宽度(两圆半径之差)为6cm,AB=5cm,∴ME=6cm,在Rt△OBE中,设OM=rOB2=BC2+(OM+MN)2,即(r+6)2=52+(r+5)2,解得r=7cm,故小圆半径为7cm.