C(n,3)=n(n-1)(n-2)/6
∑C(n,3)=(3³+4³+......n³+6+8+......+2n-3×3²-3×4²-......3×n²)/6
={n²(n+1)²/4-9+n(n+1)-6-3×[n(n+1)(2n+1)/6-5]}/6
=n^4/24-n³/12-n²/4+n/2
求C(3,3)+C(4,3)+C(5,3)+...C(n,3)的化简结果 过程要的
解:∵C(n,3)=n(n-1)(n-2)/3!=(n³-3n²+2n)/6,∴有:
C(3,3)=3³-3×3²+2×3
C(4,3)=4³-3×4²+2×4
C(5,3)=5³-3×5²+2×5
..................................
C(n,3)=n³-2×n²+2×n
将以上n-2个等式竖向相加,得:
C(3,3)+C(4,3)+C(5,3)+...C(n,3)=(3³+4³+5³+...+n³)-3(3²+4²+5²+...+n²)+2(3+4+5+...+n)
={[n(n+1)]²/4-9}-3[(1/6)n(n+1)(2n+1)-5]+(3+n)(n-2)
=[n(n+1)]²/4-n(n+1)(2n+1)/2+(3+n)(n-2)+6
=[n²(n+1)²-2n(n+1)(2n+1)+4(n+3)(n-2)]/4+6
=(1/4)n(n³-2n²-n+2)=n(n-2)(n-1)(n+1)/4, (n≧3,n∈N)
其中用了:1³+2³+3³+........+n³=[n(n+1)]²/4,故3³+4³+5³+....+n³=[n(n+1)]²/4-9
和 1²+2²+3²+....+n²=(1/6)n(n+1)(2n+1),故3²+4²+5²+.....+n²=(1/6)n(n+1)(2n+1)-5